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Abstract. In this article, we propose an incremental method for com-
puting seeded watershed cuts for interactive image segmentation. We pro-
pose an algorithm based on the hierarchical image representation called
the binary partition tree to compute a seeded watershed cut. We show
that this algorithm fits perfectly in an interactive segmentation process
by handling user interactions, seed addition or removal, in time linear
with respect to the number of affected pixels. Run time comparisons with
several state-of-the-art interactive and non-interactive watershed meth-
ods show that the proposed method can handle user interactions much
faster than previous methods achieving significant speedup from 15 to
90, thus improving the user experience on large images.
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1 Introduction

Image segmentation consists in partitioning an image into meaningful regions.
A classical approach to this problem is the watershed (WS) where the image
is seen as a topological relief and the regions corresponds to catchment basins:
this method constitutes a fundamental stage of many image analysis workflows.
The watershed segmentation is still widely used in today’s learning era as a
pre-processing or a post-processing (see eg [2, 9, 13, 14, 24]), achieving state-of-
the-art results. The first approaches for WS on images considered an image
as a vertex-weighted graph [3, 23]. Nowadays, state-of-the-art WS methods are
defined on edge-weighted graphs [7], allowing to characterize WS cuts as so-
lutions to a global optimization problem related to Minimum Spanning Trees
(MST). Further advanced WS are based on hierarchical representations describ-
ing how catchments basins are progressively merged into the most significant
structures [16, 17]. In this context, the authors of [18] have proposed an algo-
rithm to compute a WS cut from a hierarchical representation called the Binary
Partition Tree (BPT) [22].

One of the major drawbacks of WS is over-segmentation as each minimum
of the image induces a catchment basin. To overcome this problem, weakly su-
pervised WS segmentation through interactivity is a popular solution. By sub-
stituting the minima of the image by user-defined seeds, this procedure makes
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it possible on the one hand to avoid over segmentation and on the other hand
to introduce semantic information into the output segmentation.

But often, the segmentation has to be corrected by successively refining seeds
i.e., adding or removing seeds, until a result close to the desired segmentation
is reached. Classical seeded WS algorithms cannot handle such incremental pro-
cess and each update of the seeds requires to completely recompute the result
on the whole image, even if a small number of pixels is affected by the change.
This problem can seriously limit the speed of user interactions on large images
or 3D volumes. This issue has been addressed in the framework of the Image
Foresting Transform (IFT) [11] with the Differential Image Foresting Transform
(DIFT) [10] a WS-based and fuzzy-connected segmentation method, whose re-
sponse time for interactive segmentation is proportional to size of the modified
regions of the scene. Interactivity has also been addressed in the context of ob-
ject segmentation with hierarchical representations, especially for trees based on
threshold decomposition i.e., component trees [20] or tree of shapes [5, 19].

In this work, we propose a seeded WS cut algorithm within the framework
of BPTs. We show that this algorithm is particularly well suited for interactive
segmentation, as it can handle user interactions in time linear with the number of
affected pixels. The method is assessed on several images without using any GPU
architecture where users were asked to interactively segment an object of interest
by adding/removing seeds, we also assessed it on a more extensive dataset where
random generated seeds are added. The run-time comparisons with state-of-the-
art incremental and non-incremental methods show a significant advantage for
the proposed method.
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Fig. 1. The three working areas: grayscale image, graph, and BPT. The dashed red
lines depict the bijection between non-leaf nodes and edges of the MST (in bold).
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2 Watershed cuts

In this section, we briefly review the notion of a WS cut, recall its relation to
minimum spanning trees and forests and highlight the important BPT datas-
tructure that is used in the following. WS cuts are deeply related to MSTs [7].
In the semi-supervised case where an edge-weighted graph (representing the im-
age) and a set of marked vertices are given, a WS cut can be obtained as the cut
induced by a minimum spanning forest where each tree is rooted in one of the
seeds [1]. The BPT is a hierarchical datastructure that allows one to represent a
MST and to efficiently browse its edges. The BPT is obtained as a by-product
of the efficient Kruskal’s MST algorithm. Figure 1 illustrates the BPT of an
edge-weighted graph and its relation to the MST of this graph (bold edges). In
particular, it can be seen that the leaves of the BPT are mapped to the vertices
of the MST and that each non-leaf node is a mapped to an edge of the MST (this
mapping is represented by the dashed segments in Figure 1). Intuitively, we can
say that every non-leaf node of the BPT represents the addition of an edge to
the MST during Kruskal’s algorithm, the added edge being used to merge the
two connected regions that contain the edges extremities. An efficient WS cut
algorithm based on BPT is presented in [8,18] to handle the non-supervised case
with no seed provided.
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Fig. 2. Overview of our workflow of the interactive incremental watershed (WS) seg-
mentation

3 Semi-supervised watershed cut algorithm with
interactions

In this section, we present a novel WS cut algorithm that is able to (i) compute
a seeded WS cut from user-provided seeds, and to (ii) efficiently update this WS
cut from user’s feedback given in the form of successive deletions and additions of
seeds. The workflow of the method, presented in Figure 2, comprises three main
parts: 1) Computation of an MST and an associated BPT; 2) Identification of
WS cut edges by browsing the BPT, taking into account the seeds provided by
the user. These edges correspond to the edges that must be removed from the
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MST to obtain a minimum spanning forest rooted in the given seeds. 3) Parti-
tioning and labeling of the graph vertices according to the connected components
(CC) of the forest resulting from step 2. This labeling is the resulting WS cut
segmentation. Step 1 can be performed using the algorithm presented in [18].
Section 3.1 presents an efficient algorithm for step 2, Section 3.2 discusses the
labeling involved at step 3, and Section 3.3 shows how to incrementally update
the results of the workflow based on user’s feedback.

3.1 Tree-node marking

This section is devoted to Algorithm 1 that identifies the WS edges from the
BPT of the image for some user provided seeds. The algorithm proceeds seed by
seed in an incremental manner. For each seed, taken in any order, one edge of the
initial MST must be removed to cut the region of this seed from the regions of
the current partition (obtained with the previous seeds). To this end, we search
in the BPT for the lowest node that merges a region of the new seed with a
region of the already processed seeds. In order to ”prevent” this merging and
to cut the region of the new seed from the rest of the partition, the MST edge
associated to this node is tagged WS and added to the set of edges to be deleted
from the MST.
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Fig. 3. Integer labels on non-leaf nodes represent the value of visitCount. (a) Initial-
ization with S1 and S2 as seeds. (b) Update after the addition of S3 as an additional
seed.

To make this idea practicable, we consider an array visitCount that marks
each BPT node with the number of times that this node was visited during the
successive searches. At the beginning, visitCount is initialized to 0 for each
node. Then, for each leaf node of the tree corresponding to a seed to add, we
browse its ancestors and update visitCount accordingly. Let p be a parent
of the considered seeded node, if visitCount[p] = 0 then this value has to be
incremented and the traversal continues by considering the parent of p. However,
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if visitCount[p] = 1, then node p has already been visited by a previous seed:
it must then become a WS node separating 2 different seeds. We thus increment
the value of visitCount[p] to 2 and the MST edge associated to p (denoted
by H.mstEdge[p]) is added to the edge set WS. Note that the traversal stops
when visitCount[p] = 2 as the separation induced by the addition of the new
seed has been found. When a seed is added, only the nodes in the path from
this seed to its closest WS node are visited. We can see this on Figure 3(b),
where adding seed S3 results in browsing only three nodes. During a call or a
succession of calls to Algorithm 1, each node is visited at most twice, leading to
an overall linear-time complexity with respect to the number of vertices.

Algorithm 1: Add Seed

Data: H : a BPT, seeds : a set of seeds and visitCount;
Result: ws a set of edges to be removed and visitCount updated.

1 ws← ∅
2 foreach leaf n of seeds do
3 while n ̸= H.root and visitCount[n] ̸= 2 do
4 n := H.parent[n]
5 visitCount[n] := visitCount[n] + 1
6 if visitCount[n] = 2 then
7 ws := ws ∪ {H.mstEdge[p]}

3.2 Pixel labeling

Once the WS nodes set is computed, we return to the image domain to compute
the segmentation. First, we compute the minimum spanning forest representing
the WS cut: for each added WS node, the corresponding WS edge is removed
from the MST. Then we perform a labeling of the CCs of the forest with a simple
Breadth First Search (BFS) algorithm.

3.3 Incremental workflow

The workflow presented in the previous sections can be adapted to work in
an incremental way, by considering the addition or removal of seeds and the
differential update of the resulting WS cut and all intermediary structures.

Firstly, we adapt Algorithm 1 to obtain Algorithm 2 which accounts for seed
removal. Such removal induces the merging of two regions and the disappearance
of a WS node. The traversal procedure is the same as for adding seeds except
that for each parent p, visitCount[p] is decremented and the parent brows-
ing stops if visitCount[p] = 1 after decrementation. Indeed, if the value was
decremented to 1, the current node is no longer be a WS node.
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Regarding the labeling, Algorithm 2 can now restore WS edges which induces
the merging of two CCs. That can be efficiently performed by constraining BFS
to explore only the smallest CC associated with one extremity of a cut edge. The
label of the larger CC is then spread on the smaller one. This can be done by
keeping track of the size of each CC resulting in a linear time merging w.r.t. the
number of vertices of the smallest CC. Note that when a WS edge is removed,
we also only need to relabel the components at the two extremities of this edge.
The split of a component thus also runs in time linear with the number of pixels
in the affected component.

As a result, this incremental workflow enables updating of the segmentation
in a time proportional to the number of pixels in the region affected by the seed
refinement.

Algorithm 2: Remove Seed

Data: H : a BPT, seeds : a set of seeds and visitCount;
Result: ws a set of edges to be added and visitCount updated.

1 ws← ∅
2 foreach leaf n of seeds do
3 while n ̸= H.root and visitCount[n] ̸= 1 do
4 n := H.parent[n]
5 visitCount[n] := visitCount[n]− 1
6 if visitCount[n] = 1 then
7 ws := ws ∪ {H.mstEdge[p]}

4 Experiments

We assessed the method with two different experiments. The first one confronts
different methods with real user interactions while the second one relies on a
publicly available dataset with a larger number of images and associated ground-
truth segmentations, for which the interactions are simulated by randomly se-
lecting markers from the ground truth.

4.1 Experiment with user generated seeds

For assessments, we confronted a user with a binary segmentation problem
on three images from the INRIA Holidays dataset [12] and on one provided by
ourselves. The images are all the same size: 2048 by 1536 pixels. To retrieve
seeds, we ask the user to segment the images with an interactive tool: he could
draw green seeds for the object of interest and red seeds for the background
and if a mistake was made, he could remove seeds with an eraser tool. Each
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user interaction was recorded in batches of added/removed green/red seeds. The
same sets of seeds were used for each tested method.

In this study, we consider two versions of the proposed method: (i) a non
incremental version (denoted NIWS) where we first compute the BPT and then,
at each user interaction, we completely recompute the WS edges (using only
Algorithm 1) and the induced labeling; and (ii) an incremental version (denoted
IWS) where at each interaction we update visitCount (Algorithms 1 and 2)
and the labeling by considering only the added/removed seeds. We also consider
three state-of-the-art implementations of seeded WS, namely OpenCV [4, 15]
(highly optimized library for image processing), Higra [21] (generic library for
hierarchical graph analysis) and another incremental method: the Differential
Image Foresting Transform (DIFT) [10]. IWS and NIWS have been tested with a
C++ implementation available at https://github.com/lebonq/incremental_
watershed. We used a C implementation of DIFT available at https://github.
com/tvspina/ift-demo.
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Fig. 4. Computation time of OpenCV (dot-dash blue), DIFT (dotted purple), Higra
(dashed orange), NIWS (dashed green) and IWS (plain red) along an interactive seg-
mentation session compared to the number of pixels to be updated (plain black).

The results are presented in Figure 4 and in Table 1. We see that the ini-
tialization cost (BPT creation) of both NIWS and IWS version of our method
is quickly amortized during the segmentation process: IWS and NIWS have a
much lower average execution time than other methods. In addition, we can
see that the execution time of IWS is proportional to the number of pixels af-

https://github.com/lebonq/incremental_watershed
https://github.com/lebonq/incremental_watershed
https://github.com/tvspina/ift-demo
https://github.com/tvspina/ift-demo


8 Q. Lebon et al.

fected by seed updates as expected from the theoretical study. The upper bound
is given by the first interaction, which labels all pixels (the first step is there-
fore equivalent to NIWS), and spikes in computation time occurs during mid- or
end-interactions if the user updates seeds in a large CC, resulting in a significant
number of pixel changes. Our results also indicate that there is no significant
difference in computation time between adding or removing seeds.

Method Init Average Max Accumulated

IWS 210.0 9.2 89.3 514.1
NIWS 210.0 82.2 94.8 3164.4
DIFT 14.0 478.4 622.8 15886.3

OpenCV ∅ 141.7 174.8 5089.4
Higra ∅ 829.1 1239.4 29012.0

Table 1. Computation time (ms) of the methods. The second column corresponds to
the initialization time. The third and fourth columns give the average and maximum
computation time over all user interactions. The last column gives the total computa-
tion time (initialization plus all user interactions).
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Fig. 5. Three stages in an interactive segmentation session. The red lines represent
background seeds, the green lines represent object seeds, and the yellow lines represent
the segmentation produced by the current set of seeds.
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4.2 Experiment with randomly generated seeds

To assess the methods on a standard dataset with more samples, we chose the
BIG dataset [6] which is composed of large natural images (from 2048 by 1600
to 5000 by 3600 pixels). We use all 150 images and pair each image with a series
of 70 seeds. Seeds are divided into two balanced classes: object and background.
Each seed is a ball of radius 11 centered on a randomly chosen pixel of the object
(resp. background) mask eroded by a ball of radius 12 ensuring that the seed
lies in the object (resp. background).

In this experiment, we consider the same methodology as in Section 4.1.
During the iterative process, seeds are alternatively picked within the object and
within the background. In this experiment, only addition of seeds is considered,
never removal.
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Fig. 6. Computation time per pixel of OpenCV (dot-dash blue), DIFT (dotted purple),
NIWS (dashed green), Higra (dashed orange) and IWS (plain red). The time per pixel
is the average for all 150 images.

The results are presented in Figure 6 and Table 2. For each interaction,
the computation time is the average over all 150 images. With this experiment,
the tendency observed in Section 4.1 is confirmed: the execution times of other
methods are constant over the iterations whereas our incremental method shows
decreasing execution times over the iterations, as the number of pixels affected
by the interaction decreases. Furthermore, we observe that our proposed in-
cremental methods significantly improves the answer-time to user interactions
compared to all other methods. We can see that the curve for the IWS has a
”sawthooth” look. It can be easily explained as we alternately add seeds on the
objects and on the background, and the size of the objects is often much smaller
than that of the background. Up spikes correspond to seeds placed on the back-
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ground, while down spikes correspond to seeds placed on the objects. This is due
to the algorithm’s dependence on the size of the regions to be updated.

Method Init Average Max Accumulated

IWS 88.1 6.8 27.6 563.6
NIWS 88.1 28.0 28.6 2051.3
DIFT 3.8 172.0 176.3 12044.9
OpenCV ∅ 60.9 61.2 4262.0
Higra ∅ 300.7 311.9 21045.3

Table 2. Computation times expressed in nanoseconds per pixels. The second column
gives the initialization time of each method. The third and fourth columns give the
average and maximum computation time over all interactions. The last column gives
the total computation time, considering the sum over the 70 interactions and the
initialization time.

5 Conclusion

We proposed an interactive seeded WS segmentation method that is compli-
ant with an incremental process exploiting the causality within the interactive
sessions to achieve remarkable performances, significantly improving responsive-
ness. In future works, we plan to test it on larger images or 3D volumes and to
better optimize the splitting algorithm by inferring region size to ensure that
the region to label is the smallest.
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